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Aim: To clarify the high variability in COVID-19-related deaths during the
first wave of the pandemic, we conducted a modeling study using publicly
available data.

Materials and methods: We used 13 population- and country-specific
variables to predict the number of population-standardized COVID-19-related
deaths in 43 European countries using generalized linear models: the
test-standardized number of SARS-CoV-2-cases, population density, life
expectancy, severity of governmental responses, influenza-vaccination
coverage in the elderly, vitamin D status, smoking and diabetes prevalence,
cardiovascular disease death rate, number of hospital beds, gross domestic
product, human development index and percentage of people older than
65 years.

Results: We found that test-standardized number of SARS-CoV-2-cases and
flu vaccination coverage in the elderly were the most important predictors,
together with vitamin D status, gross domestic product, population density and
government response severity explaining roughly two-thirds of the variation in
COVID-19 related deaths. The latter variable was positively, but only weakly
associated with the outcome, i.e., deaths were higher in countries with more
severe government response. Higher flu vaccination coverage and low vitamin
D status were associated with more COVID-19 related deaths. Most other
predictors appeared to be negligible.

Conclusion: Adequate vitamin D levels are important, while flu-vaccination
in the elderly and stronger government response were putative aggravating
factors of COVID-19 related deaths. These results may inform protection
strategies against future infectious disease outbreaks.

Europe (Central), influenza vaccination, non-pharmaceutical interventions, SARS-
CoV2, vitamin D
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Introduction

The SARS-Corona-Virus 2 (CoV2) pandemic caused an
unprecedented worldwide public health crisis by its impact on
basically every system of human organization (1, 2). Untreated
COVID-19 disease may lead to severe atypical pneumonia (3,
4), a cytokine storm and other potentially lethal sequelae (5-
7). Other potential factors, such as host factors or population
factors, were not much considered in the scientific and political
discourse. For example, there is now strong evidence that
vitamin D status predicts the risk for and outcome of COVID-
19 infections (8-13). We also know that demographics play
a role, as initially mostly elderly patients with a mean age
above 70 years have been severely affected (14, 15). However,
during the initial phase of the CoV2 outbreak, there was a
wide variation in lethality across countries and regions. This
variation is partially shrouded by the fact that most agencies and
their dashboards propagate unstandardized figures of cases and
deaths. A publication that estimated excess death rates in the US
during the early time of the CoV2 pandemic as compared with
the same months of previous years revealed a wide variation
from—71,9 deaths per 100.000 inhabitants in North Dakota to
299,1 deaths per 100.000 inhabitants in New York City, with
seven states actually exhibiting less excess mortality than in the
previous comparison years, and 12 US states presenting with
excess mortality figures below 10 per 100.000 inhabitants (16).
The same is true for Europe: Miles and colleagues listed excess
deaths of 21% for Spain, 20% for the UK, 18% for Italy down
to 6% for Sweden, 3% for Portugal, —1% for Germany, —3%
for Denmark and —4% for Norway during the first wave of the
pandemic (17).

In order to be better prepared for future infectious disease
outbreaks, there is clearly a need to understand what might have
caused such variation in death numbers during the first wave
of the pandemic. Are there population variables, public health
variables, or individual-specific factors that can be identified
that make this variation understandable? This was the guiding
question of this modeling study.

Materials and methods

We extracted data for 44 European countries for which
the number of COVID-19 related deaths per 1.000.000
inhabitants up until 315t August 2020 was known. This date
was chosen since it approximately marked the end of the
first infection wave in Europe (18, 19). The following 13
variables were used as putative predictors of the dependent
variable “standardized COVID-19 related deaths” which we

« »

subsequently refer to as “y” (Supplementary material 1): (i)
the test-standardized number of cases (in %), calculated as

the number of cases in a country divided by the number
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of tests in that country x 100; (ii) the influenza vaccination
rate in the elderly; (iii) life expectancy (in years); (iv) the
population density (people per km?); (v) mean Government
Response Stringency Index (GRSI) that describes the number
and severity of non-pharmaceutical interventions employed
between 15th March and 15th August 2020; (vi) vitamin D status
(25(0OH)D < 50 nmol/l vs. > 50 nmol/l); (vii) cardiovascular
disease (CVD) death rate; (viii) diabetes prevalence; (ix)
smoking habits (average percentage of male and female
smokers); (x) percentage of elderly (people older than 65
years); (xi) gross domestic product (GDP); (xii) human
development index; (xiii) hospital beds (number of beds
per thousand inhabitants). The data sources are given in
Supplementary material 1.

Because the distribution of y followed a gamma distribution
well (Figure 1), we calculated generalized linear models (GLMs)
on a gamma-distributed variable with a log-link function. Since
a log-transformation produced an outcome variable with an
approximately normal distribution (Shapiro-Wilk normality test
p = 0.864, Figure 1), we also calculated standard multiple linear
regression models (LRMs) on log(y). During the initial check of
modeling assumptions, one outlier (Andorra) was identified and
removed from the sample (Supplementary material 1).

The final sample thus included 43 European countries of
which 40 had known flu vaccination rates, 37 had known flu
vaccination rates and GRSI values, and 31 had no missing
variable values. To utilize as many cases as possible for
multivariable modeling (20) missing variable values were
imputed with multiple imputation by chained equations using
the R package “mice” (21). A total of 100 imputation data sets
were created. Each was used to fit the regression models, and the
model parameters were averaged over all 100 model fits.

Different regression models were pre-specified according
to plausible scientific hypothetical explanations for COVID-19
related deaths, reflecting the scientific practice of evaluating
multiple pre-specified working hypotheses for their ability to
explain the observed data (22). To complement the set of pre-
specified hypotheses, one additional model was built using the
Least Absolute Shrinkage and Selection Operator (LASSO), a
variable selection method that shrinks the regression coefficients
of less important predictors to zero (23). Rather than performing
multiple null hypothesis testing, we ranked the different models
according to their evidence by using the bias-corrected Akaike
Information criterion (AICc) (22).

Because of the skewed distribution of some of the predictors,
we first fitted a univariable model for each predictor and its
log transform, and decided to use the latter for multivariable
modeling if it resulted in a AICc reduction by at least 2 compared
to its non-transformed values. In this way, it was found that
test-standardized cases, population density and CVD death rate
resulted in significantly better model fits when used as log-
transformed variables.
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FIGURE 1

Left: Observed distribution of the outcome variable “COVID-19 related deaths per 1 million inhabitants” and a gamma distribution (rate =
0.00438, shape = 0.9270) fitted through maximum likelihood estimation. Right: Observed distribution of the log-transformed outcome variable,

with a best-fit normal distribution.
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As the simplest hypothesis, we assumed that the number
of deaths could be predicted by the number of test-
standardized cases:

o

y ~ log(test — standardized cases)

The second most-plausible simple hypothesis was that in
addition to the number of cases, the severity of governmental
responses, whose concept was to prevent infections, would allow
better predictions of the outcome:

y ~ log(test — standardized cases) + GRSI (2)

A third model was motivated by an interesting paper showing
that the influenza vaccination rate in the elderly was significantly
correlated at r = 0.68 with COVID-19 related deaths in Europe
(24). Furthermore, early clinical data have indicated that vitamin
D has protective effects against COVID-19, which would
be expected based on its immune-modulatory functions (1).
Finally, a modeling study by Liang et al. found that the number
of hospital beds in a country was associated with decreased
COVID-19 mortality (25). In model 3, we therefore investigated
the impact of flu vaccinates rates, nation-wide vitamin D status
and the number of hospital beds, which all could be seen as
features of the health care system:

y ~ log(test — standardized cases) 4 vitamin D status

®3)

+ hospital beds + flu vaccination rate

During the first wave of the pandemic, elderly people were far
more susceptible to COVID-19 related deaths (19, 26), whereby

Frontiersin Public Health

an inverse association between vitamin D levels and COVID-
19 severity was shown in an Italian study (27). These findings
motivated the construction of a fourth model which attempted
to predict COVID-19 related deaths based on vitamin D status
and demographics:

y ~ log(test — standardized cases) + vitamin D status

+ life expectancy + percentage of elderly (4)

Besides old age, it was soon revealed during the early phase
of the pandemic that cardiovascular disease (19), diabetes (28)
and smoking (29, 30) are associated with COVID-19 severity.
The fifth hypothesis therefore assumed that population-level
morbidity predictors would be relevant for predicting COVID-
19 related deaths:

y ~ log(test — standardized cases) 4 vitamin D status
+ smoking habits + log(CVD death rate)
()

+ diabetes prevalence

Previous modeling studies also tested for associations between
COVID-19 related deaths and different country-specific
predictors such as the GDP and percentage of the elderly
(25, 31). The sixth hypothesis therefore correlated COVID-19
deaths with such country-specific predictors:

y ~ log(test — standardized cases) + vitamin D status
+ log(population density) + life expectancy
+ GDP + human development index

+ percentage of elderly (6)

03 frontiersin.org


https://doi.org/10.3389/fpubh.2022.922230
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Klement and Walach

10.3389/fpubh.2022.922230

N rate

O,

(2]
3
Q
<
g
g
T

Fl

Vitamin D

Flu vaccination rate

Hospital beds -0.51-0.47

Human Development Ind:.

Gross Domestic Product

Elderly

Life expectancy

Population density

Smoking prevalence

FIGURE 2
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The seventh model was the full model using all 13 predictors
which was included as a reference model (22).

Finally, an eighth model was built using a data-driven
approach. To this aim, for each imputed dataset the most
important variables were selected from the full set of 13
predictors using the LASSO method in a LRM predicting
log(y). LASSO performs variable selection by shrinking the
regression coeflicients of the less important predictors to zero
(32). The following variables were selected into the majority

(>50) of models:

y ~ log(test — standardized cases) + vitamin D status

+ GRSI + flu vaccination rate + log(CVD death rate)

+ log(population density) + GDP (7)

The best model was identified as the one with the smallest
AICc, and all other models were compared to the best model by
computing AICc differences A;, probabilities w; of model i being

Frontiersin Public Health

the best model (in the Kullback-Leibler information sense) and
evidence ratios E; j = w;/w; (22). Model adequacy was measured
by R?, the proportion of variance explained by the predictors; for
the GLMs a Kullback-Leibler divergence-based R* measure was

used (33).
All analyses were calculated with R version 4.0.2, and

statistical significance was defined as p-values < 0.01. A detailed
description of the statistics is given in Supplementary material 1.

Results

Figure 2 shows a so-called corrgram (34) for the 13 variables
that we used for modeling, whereby only the significant (p
< 0.01) correlations have been depicted. Smoking and CVD,
but not diabetes prevalence, were inversely and significantly
correlated with life expectancy, the human development index
and gross domestic product. No significant correlations existed

04 frontiersin.org
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TABLE 1 Parameters of the generalized linear models fitted to standardized deaths and linear models fitted to the logarithm of standardized deaths.

Variable Regression p-value KL-R? KL-R; di. Regression p-value R? Rg di.
coeflicient coeflicient

Model 1 Generalized linear model Linear model

log(test-standardized cases [%]) 0.600 (0.164) 0.00076 0.218 0.199 0.568 (0.165) 0.0014* 0.225  0.206

Model 2 Generalized linear model Linear model

log(test-standardized cases [%]) 0.609 (0.159) 0.00047 0.297 0.261 0.498 (0.165) 0.0045* 0.286  0.250

GRSI 0.037 (0.017) 0.035 0.032 (0.017) 0.075

Model 3 Generalized linear model Linear model

log(test-standardized cases [%]) 0.729 (0.145) 1.9 x 107" 0.524 0.474 0.678 (0.157) 0.00013% 0.491  0.437

Vitamin D status (sufficient vs. deficient) —0.299 (0.367) 0.425 —0.510 (0.348) 0.154

Hospital beds per 1000 0.025 (0.068) 0.710 0.011 (0.064) 0.859

Flu vaccination rate [%)] 0.032 (0.007) 3.1x 107 0.029 (0.007) 0.00029*

Model 4 Generalized linear model Linear model

log(test-standardized cases [%]) 0.730 (0.131) 2.9 x 107 0.498 0.446 0.695 (0.164) 0.00016* 0.424  0.363

Vitamin D status (sufficient vs. deficient) —0.472 (0.287) 0.109 —0.416 (0.374) 0.275

Life expectancy [years] 0.189 (0.040) 41 %107 0.155 (0.050) 0.0043*

Elderly [%] —0.033 (0.051) 0.533 0.005 (0.069) 0.943

Model 5 Generalized linear model Linear model

log(test-standardized cases [%]) 0.709 (0.151) 83 x 107" 0.551 0.490 0.735 (0.158) 53x107% 0504  0.437

Vitamin D status (sufficient vs. deficient) —0.363 (0.307) 0.248 —0.488 (0.346) 0.170

Smoking prevalence [%] —0.007 (0.029) 0.806 —0.006 (0.030) 0.844

log(CVD death rate) —0.999 (0.388) 0.020 —0.985 (0.392) 0.020

Diabetes prevalence [%] —0.09 (0.07) 0.185 —0.112 (0.080) 0.174

Model 6

log(test-standardized cases [%]) 0.961 (0.171) 6.0 x 107" 0.557 0.484 0.894 (0.198) 0.00013* 0.516  0.436

log(population density [km™2]) 0.222(0.113) 0.058 0.127 (0.133) 0.325

Life expectancy [years] —0.011 (0.076) 0.883 0.011 (0.087) 0.886

GDP 2.6 x 107° (1.5 x 107°) 0.088 3.8 x 107° (1.7 x 107%) 0.037

Human development index 1.94 (5.52) 0.726 —3.9(6.4) 0.549

Elderly [%] 0.077 (0.062) 0.224 0.110 (0.074) 0.152

Model 7

log(test-standardized cases [%]) 0.968 (0.148) 1.7 x 107%" 0.773 0.671 0.951 (0.172) 1.3 x 107 0756  0.647

GRSI 0.030 (0.015) 0.055 0.030 (0.018) 0.118

Vitamin D status (sufficient vs. deficient) —0.716 (0.326) 0.043 —0.763 (0.372) 0.055

Influenza vaccination rate 0.019 (0.006) 0.0055* 0.020 (0.007) 0.011

Life expectancy [years] —0.046 (0.112) 0.685 —0.070 (0.123) 0.575

log(population density [km~2]) 0.092 (0.107) 0.399 0.062 (0.124) 0.623

Smoking prevalence [%] —0.014 (0.022) 0.520 —0.022 (0.025) 0.350

log(CVD death rate) —0.037 (0.769) 0.962 —0.165 (0.936) 0.862

Diabetes prevalence [%] —0.058 (0.069) 0.414 —0.047 (0.082) 0.572

Hospital beds per 1000 0.032 (0.072) 0.657 0.065 (0.082) 0.433

GDP 3.8 x107° (1.2 x 107%) 0.0055* 42x107° (1.4 x 107°) 0.0074*

Human development index —2.5(5.2) 0.630 —2.8(6.2) 0.654

Elderly [%] 0.088 (0.057) 0.143 0.097 (0.065) 0.150

Model 8

log(test-standardized cases [%]) 0.844 (0.123) 9.1 x 1077 0.727 0.681 0.809 (0.147) 1.1 x 107 0.689  0.634

GRSI 0.021 (0.011) 0.071 0.021 (0.014) 0.154

Vitamin D status (sufficient vs. deficient) —0.704 (0.283) 0.023 —0.801 (0.332) 0.024

Flu vaccination rate [%] 0.021 (0.005) 0.00021* 0.021 (0.006) 0.0015*

log(population density [km~2]) 0.127 (0.097) 0.209 0.099 (0.111) 0.379

GDP 2.8 x 1075 (7.3 x 1076) 0.0070* 3.0 x 1075 (9.0 x 1076) 0.0023*

GDP, gross domestic product; GRSI, Government Response Stringency Index; CVD, Cardiovascular disease; *p < 0.01 (statistically significant).
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for vitamin D levels, test-standardized cases and the GRSIs with
any of the other variables.

The results of both the GLMs (assuming a Gamma
distribution for the outcome variable y) and the LRMs fitted to
log(y) are presented in Table 1. The GLMs and LRMs yielded
qualitatively similar results for all eight hypotheses considered.
Test-standardized cases alone were able to explain about 20%
of the variance in y or log(y), respectively, while the full
model (model 7) was able to explain 64-67% as judged by
the adjusted KL-R? values. As expected, test-standardized cases
were positively related to and the most significant predictor
of COVID-19 related deaths in all models. As also expected,
sufficient vitamin D status was associated with fewer deaths,
although the association was only significant at the conventional
p = 0.05 level in models 7 and 8, but not at p = 0.01,
as stipulated. Surprisingly, however, it was found that the
GRSI was no significant predictor of COVID-19 related deaths,
and even exhibited a positive association (i.e., more stringent
measures predicting higher death rates). Also surprisingly,
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flu vaccination rates were significantly and positively related
to the outcome, i.e., there were more deaths in countries
with higher flu-vaccination coverage. The number of hospital
beds, percentage of elderly, human development index and
smoking and diabetes prevalence, were not strongly associated
with COVID-19 related deaths. In contrast, the GDP was
found to be a significant predictor in models 7 and 8
with a higher GDP being associated with more COVID-19
related deaths.

A ranking of the different models is given in Table 2. The
evidence clearly favored the data-driven model 8 which was built
by first selecting variables using the LASSO method. Compared
with this model, all other models were basically ruled out by
the strength of evidence. This shows that a specific combination
of government-, population- and country-specific factors were
important for predicting COVID-19-related deaths. This final
model 8 was thereby able to explain roughly two-thirds of the
variance in outcomes, similar to the full model 7, but using seven
less predictors.

TABLE 2 Comparison of the eight different models specified in equations (1-8).

Generalized linear model

Linear regression model

Rank Model AICc A w; Eg i Model AICc A; wj Eg;

1 8 505.1 0.0 0.9998 1 8 104.9 0 0.999 1

2 7 524.2 19.1 <0.0001 13,805 3 120.3 15.4 0.0005 2,211

3 3 524.8 19.7 <0.0001 19,376 7 121.8 16.9 0.0002 4,781

4 5 524.9 19.8 <0.0001 19,641 5 121.9 17.1 0.0002 5,083

5 6 527.5 22.42 <0.0001 73,783 6 1239 19.1 <0.0001 13,940
6 4 527.5 22.43 <0.0001 74,275 4 125.7 20.8 <0.0001 33,247
7 2 538.5 334 <0.0001 >100,000 2 129.7 24.8 <0.0001 >100,000
8 1 541.3 36.2 <0.0001 >100,000 1 130.7 25.8 <0.0001 >100,000

Models were ranked according to increasing AICc, i.e., the higher AICc the less parsimonious the model and the worse the fit in relation to the number of variables employed. AICc:

Bias-corrected Akaike Information Citerion; A;: Difference in AICc to the best model (models with A > 15-20 must be judged to be implausible); w;: probability of model i being the

Kullback-Leibler best model; Eg ;: evidence ratio between model 8 (the best model) and model i.

TABLE 3 Results of the full generalized linear models fitted to the original dataset with missing variables removed (intercept not reported).

Full generalized linear model (N = 31)

Full linear regression model (N = 31)

Variables Coeflicient estimate (SE) p-value Coeflicient estimate (SE) p-value
log(test-standardized cases [%)]) 0.812 (0.143) 7.6 x 107 0.824 (0.174) 7.9 x 107
GRSI 0.015 (0.011) 0.192 0.012 (0.014) 0.393
Flu vaccination rate [%] 0.026 (0.005) 8.6 x 107 0.024 (0.006) 0.00026*
Vitamin D status (sufficient vs. deficient) —0.777 (0.256) 0.0057* —0.798 (0.311) 0.017
log (population density [km~2]) 0.142 (0.097) 0.156 0.161 (0.117) 0.182
Gross domestic product 2.8 x107% (7.3 x 1079) 0.00064* 3.1 x107° (8.8 x 1079) 0.0016*

Model quality
KL-R? 0.781
Adjusted KL-R? 0.726

0.762
0.703

GRSI, Government Response Stringency Index; SE, Standard error; *p < 0.01 (statistically significant).
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In order to check if our results are dependent on the
imputation of missing variables, we refitted the best GLM
and LRM model to the original dataset with missing variables
removed (Table 3). These models resulted in qualitatively very
similar results as model 8 in Table 1 and confirmed that the
two most important predictors of standardized COVID-19
related deaths were again influenza vaccination rates and the
number of test-standardized cases, which were both positively
associated with the outcome. GDP was also confirmed as a
significant and positively associated predictor of COVID-19
deaths, and vitamin D status now reached the threshold of
statistical significance in the GLM (p = 0.00573).

Discussion

Modeling COVID-19 related death rates in 43 European
countries during the initial phase of the outbreak until August
2020, unravels some interesting findings:

a) Unsurprisingly, test-standardized CoV2-cases predict the
number of deaths. This variable on its own was able to
explain about 20% of the variance.

b) Surprisingly, the stringency of government responses

correlated positively with COVID-19 related death rates,

i.e., stricter government response was associated with more

deaths; however, it was not a significant predictor.

¢) Also surprisingly, the second-most important predictor
was the flu-vaccination coverage in the elderly: the higher
this vaccination rate is, the more COVID-19 related deaths
we see in a country.

d) We confirmed that population-wide vitamin D status may

have acted protectively against COVID-19 related deaths

during the initial phase of the outbreak. It was a highly
significant predictor in the best GLM fitted to the dataset

with no missing variables (Table 3).

e) Countries with a higher GDP experienced a higher
COVID-19 associated death rate.

These findings are strengthened by the fact that two different
models reached the same conclusions: a GLM predicting a
gamma-distributed outcome variable with log-linked predictors
and a standard LRM with identity link functions of predictors
on a log-transformed outcome variable.

It is easy to understand that more CoV2 cases translate
into more COVID-19 related deaths. The importance of
this predictor on its own is underlined by the fact that
it is able to explain roughly 20% of COVID-19 related
deaths. However, there remains variance to be explained
by other factors. Although we do not assume we have
captured all important variables, we have captured at least
some as only six variables were able to explain about two-
thirds of the total variance. A reassuring finding was that
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country-wide vitamin D status was inversely associated
with COVID-19 related deaths, consistent with clinical and
epidemiological data (8-13). Most surprising and most
counterintuitive are the two findings that there are more
COVID-19 related deaths in countries with higher flu
vaccination coverage in the elderly, and, in addition, that the
severity of governments responses with non-pharmaceutical
interventions was non-significant and counterintuitive in its
effect (Table 1).

How can this strong association between flu vaccination
rates and COVID-19 related deaths be explained? A careful
randomized trial of flu vaccination in children showed that
children who were vaccinated against influenza were better
protected against influenza but suffered a fourfold higher risk
of other respiratory virus dependent diseases (35). This might
have to do with unknown mechanisms that disturb the ecology
of pathogens, known as the virus interference phenomenon. A
study conducted during the 2017/2018 influenza season revealed
that flu vaccination was associated with a 36% increased odds
of contracting respiratory coronavirus diseases (odds ratio 95%
confidence interval 1.14-1.63, p < 0.01), while affording specific
protection against influenza and parainfluenza viruses (36).

Thus, the negative impact of flu vaccination might have
to do with several mechanisms: First, the virus interference
phenomenon as shown for non-CoV2 coronaviruses (36);
second, the fact that the immunological load on an organism
that has to deal with a flu vaccine binds resources that cannot
be mustered against a new and dangerous pathogen like CoV2.
Third, it might also be the case that immune-enhancers in
vaccines, such as aluminum derivates which are potentially
toxic, burden the organism and hamper natural immunity. For
example, it was shown experimentally in chicks that aluminum
can disturb vitamin D metabolism (37). Furthermore, it has been
argued that influenza vaccines are produced in eggs and other
cell-systems that are not routinely tested against corona-viruses.
Hence, corona-virus proteins from other corona-viruses might
be present in these vaccines and induce allergic reactions against
the novel CoV2 (38). Although these biological mechanisms
would support the hypothesis that higher influenza vaccination
rates increased COVID-19 mortality rates, we cannot rule
out the possibility that influenza vaccination rate is simply
a non-causal confounder strongly associated with some other
(untested) variable, so that further research is needed to resolve
this issue. Our finding is also in contrast to data from the US
(39, 40). However, the correlation between influenza vaccination
and COVID-19 death rate in the US is much lower than
in Europe (24), probably because there is little variation in
influenza vaccine coverage in the US. Our results are derived
from population-level data in Europe in the elderly, which might
describe a specifically susceptible fraction of the population.

Non-pharmaceutical interventions were widely hailed in
modeling studies as having prevented higher incidence figures
of cases and deaths (41-43). While this might be true for some
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countries and some single interventions, several authors are
skeptical (44-49). Careful modeling studies for Germany, for
instance, show that, although Germany was comparatively early
to react — first measures were introduced on March 8 and shortly
after this a full country lockdown was enacted - the peak of the
infection and of the reproduction numbers was reached in nearly
all 420 German districts on or around March 8 and thus none of
the non-pharmaceutical interventions could have been causally
related to the reduction of cases, and hence deaths (50, 51). The
ensuing reduction of cases is a misattribution: it was not due to
the lockdown, but obviously to the fact that the virus followed
its own dynamic which needs to be better understood (52).
Thus, there is independent evidence that non-pharmaceutical
interventions are less effective than often thought. This would
explain the weak association with COVID-19 related deaths in
our analysis. Interestingly, our observation that the GRSI was
positively associated with COVID-19 related deaths during the
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first phase of the pandemic replicates an earlier modeling study
by Annaka which included data from 108 countries and in which
this association was statistically significant in Ordinary Least
Squares regression (31).

We find it quite remarkable that only six variables help to
explain roughly two-thirds of the variation in COVID-19 related
deaths. Because vitamin D status was one of them, it might be
interesting to study other variables related to health. Vitamin
D entered the best model number 8 with a comparatively large
regression coefficient and was highly significant in a GLM fit
to the complete dataset. Vitamin D seems to be an important

predictor, as models without it are clearly inferior. For example,
removing vitamin D status as a predictor from the GLM 8 fitted
to the complete dataset resulted in a significantly worse model
fit (AICc = 424.4 vs. 362.0) and less efficiency in explaining
variance (KL-R2; = 0684 vs. KL-R2; = 0.726). Thus, as
a theoretically and numerically strong predictor, vitamin D
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FIGURE 3
Corrgram showing the Spearman correlation coefficients for all pairs of the six variables included in the best model. The strongest correlation
was observed between vitamin D and the gross domestic product which was almost significant (p = 0.013).
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strongly improves model fit and therefore we conclude that
vitamin D was protective against death during the first wave of
the Covid-19 pandemic. Its lack of strong statistical significance
in models fit to the imputed dataset is likely due to the coarse
grained nature of our data and uncertainty in imputation of
missing values.

The limitations of our approach need to be kept in mind:

First, one might ask whether collinearity inflated our results,
as some of the correlations between the variables used were
rather high (Figure 2). However, this was not the case since no
significant correlations existed among the six variables in the
best model (Figure 3). This was supported by the computation
of variance inflation factors which were all <1.65, showing that
there was no significant collinearity between these six variables.
In particular, flu vaccination rate had the least collinearity with
the other predictors (variance inflation factor = 1.2).

Second, we were unable to find flu vaccination data, GRSI
and some other data for all countries. We tried to overcome this
limitation through multiple imputation by chained equations,
and the results were consistent with an analysis using only the
cases for which every variable value was known.

Third, one potential problem we cannot remedy is the
notorious unreliability of data or differences in the definition
of cases, of deaths, and in reporting standards. This can be
seen in the fact that Belgium is a clear outlier in all analyses
that decreases the fit of the model. It is well known that the
definition of COVID-19 related deaths in Belgium was more
lenient than in other countries. Also, there is some evidence
that some authoritarian governments tended to manipulate
(downplay) their COVID-19 death data (31), which could have
biased our results. In his country-level modeling study, Annaka
(31) accounted for such a putative reporting bias by including
the HRV transparency index developed by Hollyer et al. (53)
which he used as a proxy for data transparency. However,
the HRV index was originally not intended for assessing the
transparency of pandemic death reporting; in addition, its latest
version (the one used by Annaka) dates to the year 2010
and was only available for 21 of the 43 countries included in
our analysis (median index 4.403, range —0.685-5.636); that
Denmark scored worst with an HRV index of only —0.685 also
appears counterintuitive and questions the application of this
index to judge the transparency of COVID-19 related deaths
reporting. The fact that we restricted the analysis to European
countries of which the large majority nowadays is characterized
as democratic would have mitigated the putative effects of data
transparency bias.

Vitamin D estimates also have several uncertainties, such as
having been measured in rather small cohorts, in different years
and during different times of the year. Whenever possible, we
preferred vitamin D values from the literature that had been
measured in elderly people and during winter/spring. There was
a weak positive correlation between a country’s representative
25(OH)D concentration and latitude (Kendalls t = 0.255,
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p = 0.0438), pointing toward vitamin D supplementation having
a stronger influence on vitamin D status than living in southern
latitudes. Also, COVID-19 reporting systems might be less
reliable in some countries compared with others. These are the
limits of our data and our analyses. But considering the fact
that the whole world, politicians and public health officials use
exactly the same data for their decisions should allow us to use
them for analysis. One should remember that being a case, when
considering the number of tests in a country, has only a weak
relationship with becoming a fatality. It has been shown that
the case fatality rate during the first wave was much less than
previously assumed and estimated to be 0.15% (54). In Germany
the case-fatality rate has been calculated from well documented
cohorts to be 0.12 to 0.35% (55, 56). The still widely circulating
higher case fatality rates are due to the fact that they are largely
calculated using raw, absolute figures without knowledge of the
real prevalence (57). But also standardized figures might be
unreliable. Often the same person is tested multiple times. Thus,
we likely overestimate the number of cases by some margin. This
would mean: the true link between being a case and becoming a
fatality is probably even weaker.

Considering all these weaknesses our paper also has some
strengths. First, care was taken to ensure that the essential
requirements for linear modeling were met. Second, we pre-
specified plausible hypotheses (expressed as GLMs or LRMs)
and used a robust model comparison framework based on
Kullback-Leibler information to compare them, in this way
automatically incorporating penalties for potential overfitting.
Third, restricting the analysis to Europe means that we have
a comparatively homogeneous sample which nevertheless has
enough variability. While all countries issued warnings, the way
non-pharmaceutical interventions were implemented differed
widely, from suggestions and recommendations in Sweden to
very strict stay-at-home orders that were policed in Spain, from
nearly no regard in Belarus to strict political measures in Italy.
Thus, we likely have seen a representative laboratory for the
world, except that we do not cover any variance in ethnicity.

Conclusions

In conclusion we see that COVID-19 related deaths during
the first wave were most importantly dependent on the
percentage of test-positive cases and flu-vaccination rate among
the elderly in a country, whereby larger flu vaccination rates
were associated with higher COVID-19 related deaths. The third
important predictor was the GDP, followed by country-wide
vitamin D status in the elderly, for which a causal relationship
appears well supported by clinical and mechanistic evidence.
These variables predict the variability in COVID-19 related
deaths much better than the severity of governmental responses,
the availability of hospital beds, smoking and diabetes prevalence
or CVD death rates. Overall, we were able to show that a
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specific combination of government response-, population- and
country-specific predictors was able to explain roughly two-
thirds of the variance in COVID-19 related deaths. This might
encourage others to look for additional factors that may explain
the remainder of the variability in cases and deaths during
the initial phases of the CoV2 outbreak. Ultimately, using the
insights from modeling studies such as ours may help to be better
prepared against future infectious disease outbreaks.
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