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Aim: To clarify the high variability in COVID-19-related deaths during the

first wave of the pandemic, we conducted a modeling study using publicly

available data.

Materials and methods: We used 13 population- and country-specific

variables to predict the number of population-standardized COVID-19-related

deaths in 43 European countries using generalized linear models: the

test-standardized number of SARS-CoV-2-cases, population density, life

expectancy, severity of governmental responses, influenza-vaccination

coverage in the elderly, vitamin D status, smoking and diabetes prevalence,

cardiovascular disease death rate, number of hospital beds, gross domestic

product, human development index and percentage of people older than

65 years.

Results: We found that test-standardized number of SARS-CoV-2-cases and

flu vaccination coverage in the elderly were the most important predictors,

together with vitamin D status, gross domestic product, population density and

government response severity explaining roughly two-thirds of the variation in

COVID-19 related deaths. The latter variable was positively, but only weakly

associated with the outcome, i.e., deaths were higher in countries with more

severe government response. Higher flu vaccination coverage and low vitamin

D status were associated with more COVID-19 related deaths. Most other

predictors appeared to be negligible.

Conclusion: Adequate vitamin D levels are important, while flu-vaccination

in the elderly and stronger government response were putative aggravating

factors of COVID-19 related deaths. These results may inform protection

strategies against future infectious disease outbreaks.

KEYWORDS

Europe (Central), influenza vaccination, non-pharmaceutical interventions, SARS-

CoV2, vitamin D
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Introduction

The SARS-Corona-Virus 2 (CoV2) pandemic caused an

unprecedented worldwide public health crisis by its impact on

basically every system of human organization (1, 2). Untreated

COVID-19 disease may lead to severe atypical pneumonia (3,

4), a cytokine storm and other potentially lethal sequelae (5–

7). Other potential factors, such as host factors or population

factors, were not much considered in the scientific and political

discourse. For example, there is now strong evidence that

vitamin D status predicts the risk for and outcome of COVID-

19 infections (8–13). We also know that demographics play

a role, as initially mostly elderly patients with a mean age

above 70 years have been severely affected (14, 15). However,

during the initial phase of the CoV2 outbreak, there was a

wide variation in lethality across countries and regions. This

variation is partially shrouded by the fact that most agencies and

their dashboards propagate unstandardized figures of cases and

deaths. A publication that estimated excess death rates in the US

during the early time of the CoV2 pandemic as compared with

the same months of previous years revealed a wide variation

from−71,9 deaths per 100.000 inhabitants in North Dakota to

299,1 deaths per 100.000 inhabitants in New York City, with

seven states actually exhibiting less excess mortality than in the

previous comparison years, and 12 US states presenting with

excess mortality figures below 10 per 100.000 inhabitants (16).

The same is true for Europe: Miles and colleagues listed excess

deaths of 21% for Spain, 20% for the UK, 18% for Italy down

to 6% for Sweden, 3% for Portugal, −1% for Germany, −3%

for Denmark and −4% for Norway during the first wave of the

pandemic (17).

In order to be better prepared for future infectious disease

outbreaks, there is clearly a need to understand what might have

caused such variation in death numbers during the first wave

of the pandemic. Are there population variables, public health

variables, or individual-specific factors that can be identified

that make this variation understandable? This was the guiding

question of this modeling study.

Materials and methods

We extracted data for 44 European countries for which

the number of COVID-19 related deaths per 1.000.000

inhabitants up until 31st August 2020 was known. This date

was chosen since it approximately marked the end of the

first infection wave in Europe (18, 19). The following 13

variables were used as putative predictors of the dependent

variable “standardized COVID-19 related deaths” which we

subsequently refer to as “y” (Supplementary material 1): (i)

the test-standardized number of cases (in %), calculated as

the number of cases in a country divided by the number

of tests in that country × 100; (ii) the influenza vaccination

rate in the elderly; (iii) life expectancy (in years); (iv) the

population density (people per km2); (v) mean Government

Response Stringency Index (GRSI) that describes the number

and severity of non-pharmaceutical interventions employed

between 15thMarch and 15th August 2020; (vi) vitamin D status

(25(OH)D < 50 nmol/l vs. ≥ 50 nmol/l); (vii) cardiovascular

disease (CVD) death rate; (viii) diabetes prevalence; (ix)

smoking habits (average percentage of male and female

smokers); (x) percentage of elderly (people older than 65

years); (xi) gross domestic product (GDP); (xii) human

development index; (xiii) hospital beds (number of beds

per thousand inhabitants). The data sources are given in

Supplementary material 1.

Because the distribution of y followed a gamma distribution

well (Figure 1), we calculated generalized linear models (GLMs)

on a gamma-distributed variable with a log-link function. Since

a log-transformation produced an outcome variable with an

approximately normal distribution (Shapiro-Wilk normality test

p = 0.864, Figure 1), we also calculated standard multiple linear

regression models (LRMs) on log(y). During the initial check of

modeling assumptions, one outlier (Andorra) was identified and

removed from the sample (Supplementary material 1).

The final sample thus included 43 European countries of

which 40 had known flu vaccination rates, 37 had known flu

vaccination rates and GRSI values, and 31 had no missing

variable values. To utilize as many cases as possible for

multivariable modeling (20) missing variable values were

imputed with multiple imputation by chained equations using

the R package “mice” (21). A total of 100 imputation data sets

were created. Each was used to fit the regression models, and the

model parameters were averaged over all 100 model fits.

Different regression models were pre-specified according

to plausible scientific hypothetical explanations for COVID-19

related deaths, reflecting the scientific practice of evaluating

multiple pre-specified working hypotheses for their ability to

explain the observed data (22). To complement the set of pre-

specified hypotheses, one additional model was built using the

Least Absolute Shrinkage and Selection Operator (LASSO), a

variable selection method that shrinks the regression coefficients

of less important predictors to zero (23). Rather than performing

multiple null hypothesis testing, we ranked the different models

according to their evidence by using the bias-corrected Akaike

Information criterion (AICc) (22).

Because of the skewed distribution of some of the predictors,

we first fitted a univariable model for each predictor and its

log transform, and decided to use the latter for multivariable

modeling if it resulted in a AICc reduction by at least 2 compared

to its non-transformed values. In this way, it was found that

test-standardized cases, population density and CVD death rate

resulted in significantly better model fits when used as log-

transformed variables.
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FIGURE 1

Left: Observed distribution of the outcome variable “COVID-19 related deaths per 1 million inhabitants” and a gamma distribution (rate =

0.00438, shape = 0.9270) fitted through maximum likelihood estimation. Right: Observed distribution of the log-transformed outcome variable,

with a best-fit normal distribution.

As the simplest hypothesis, we assumed that the number

of deaths could be predicted by the number of test-

standardized cases:

y ∼ log(test− standardized cases) (1)

The second most-plausible simple hypothesis was that in

addition to the number of cases, the severity of governmental

responses, whose concept was to prevent infections, would allow

better predictions of the outcome:

y ∼ log(test− standardized cases)+ GRSI (2)

A third model was motivated by an interesting paper showing

that the influenza vaccination rate in the elderly was significantly

correlated at r = 0.68 with COVID-19 related deaths in Europe

(24). Furthermore, early clinical data have indicated that vitamin

D has protective effects against COVID-19, which would

be expected based on its immune-modulatory functions (1).

Finally, a modeling study by Liang et al. found that the number

of hospital beds in a country was associated with decreased

COVID-19 mortality (25). In model 3, we therefore investigated

the impact of flu vaccinates rates, nation-wide vitamin D status

and the number of hospital beds, which all could be seen as

features of the health care system:

y ∼ log(test− standardized cases)+ vitamin D status

+ hospital beds+ flu vaccination rate (3)

During the first wave of the pandemic, elderly people were far

more susceptible to COVID-19 related deaths (19, 26), whereby

an inverse association between vitamin D levels and COVID-

19 severity was shown in an Italian study (27). These findings

motivated the construction of a fourth model which attempted

to predict COVID-19 related deaths based on vitamin D status

and demographics:

y ∼ log(test− standardized cases)+ vitamin D status

+ life expectancy+ percentage of elderly (4)

Besides old age, it was soon revealed during the early phase

of the pandemic that cardiovascular disease (19), diabetes (28)

and smoking (29, 30) are associated with COVID-19 severity.

The fifth hypothesis therefore assumed that population-level

morbidity predictors would be relevant for predicting COVID-

19 related deaths:

y ∼ log(test− standardized cases)+ vitamin D status

+ smoking habits+ log(CVD death rate)

+ diabetes prevalence (5)

Previous modeling studies also tested for associations between

COVID-19 related deaths and different country-specific

predictors such as the GDP and percentage of the elderly

(25, 31). The sixth hypothesis therefore correlated COVID-19

deaths with such country-specific predictors:

y ∼ log(test− standardized cases)+ vitamin D status

+ log(population density)+ life expectancy

+ GDP + human development index

+ percentage of elderly (6)
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FIGURE 2

Corrgram showing the Spearman correlation coe�cients for all significant correlations among the 13 variables used for modeling.

The seventh model was the full model using all 13 predictors

which was included as a reference model (22).

Finally, an eighth model was built using a data-driven

approach. To this aim, for each imputed dataset the most

important variables were selected from the full set of 13

predictors using the LASSO method in a LRM predicting

log(y). LASSO performs variable selection by shrinking the

regression coefficients of the less important predictors to zero

(32). The following variables were selected into the majority

(>50) of models:

y ∼ log(test− standardized cases)+ vitamin D status

+ GRSI+ flu vaccination rate+ log(CVD death rate)

+ log(population density)+ GDP (7)

The best model was identified as the one with the smallest

AICc, and all other models were compared to the best model by

computing AICc differences△i, probabilitieswi ofmodel i being

the best model (in the Kullback-Leibler information sense) and

evidence ratios Ei,j = wi/wj (22).Model adequacy wasmeasured

by R2, the proportion of variance explained by the predictors; for

the GLMs a Kullback-Leibler divergence-based R2 measure was

used (33).

All analyses were calculated with R version 4.0.2, and

statistical significance was defined as p-values < 0.01. A detailed

description of the statistics is given in Supplementary material 1.

Results

Figure 2 shows a so-called corrgram (34) for the 13 variables

that we used for modeling, whereby only the significant (p

< 0.01) correlations have been depicted. Smoking and CVD,

but not diabetes prevalence, were inversely and significantly

correlated with life expectancy, the human development index

and gross domestic product. No significant correlations existed
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TABLE 1 Parameters of the generalized linear models fitted to standardized deaths and linear models fitted to the logarithm of standardized deaths.

Variable Regression

coefficient

p-value KL-R2 KL-R2
adj.

Regression

coefficient

p-value R2 R2
adj.

Model 1 Generalized linear model Linear model

log(test-standardized cases [%]) 0.600 (0.164) 0.00076 0.218 0.199 0.568 (0.165) 0.0014* 0.225 0.206

Model 2 Generalized linear model Linear model

log(test-standardized cases [%]) 0.609 (0.159) 0.00047 0.297 0.261 0.498 (0.165) 0.0045* 0.286 0.250

GRSI 0.037 (0.017) 0.035 0.032 (0.017) 0.075

Model 3 Generalized linear model Linear model

log(test-standardized cases [%]) 0.729 (0.145) 1.9× 10−5* 0.524 0.474 0.678 (0.157) 0.00013* 0.491 0.437

Vitamin D status (sufficient vs. deficient) −0.299 (0.367) 0.425 −0.510 (0.348) 0.154

Hospital beds per 1000 0.025 (0.068) 0.710 0.011 (0.064) 0.859

Flu vaccination rate [%] 0.032 (0.007) 3.1× 10−5* 0.029 (0.007) 0.00029*

Model 4 Generalized linear model Linear model

log(test-standardized cases [%]) 0.730 (0.131) 2.9× 10−6* 0.498 0.446 0.695 (0.164) 0.00016* 0.424 0.363

Vitamin D status (sufficient vs. deficient) −0.472 (0.287) 0.109 −0.416 (0.374) 0.275

Life expectancy [years] 0.189 (0.040) 4.1× 10−5* 0.155 (0.050) 0.0043*

Elderly [%] −0.033 (0.051) 0.533 0.005 (0.069) 0.943

Model 5 Generalized linear model Linear model

log(test-standardized cases [%]) 0.709 (0.151) 8.3× 10−5* 0.551 0.490 0.735 (0.158) 5.3× 10−5* 0.504 0.437

Vitamin D status (sufficient vs. deficient) −0.363 (0.307) 0.248 −0.488 (0.346) 0.170

Smoking prevalence [%] −0.007 (0.029) 0.806 −0.006 (0.030) 0.844

log(CVD death rate) −0.999 (0.388) 0.020 −0.985 (0.392) 0.020

Diabetes prevalence [%] −0.09 (0.07) 0.185 −0.112 (0.080) 0.174

Model 6

log(test–standardized cases [%]) 0.961 (0.171) 6.0× 10−6* 0.557 0.484 0.894 (0.198) 0.00013* 0.516 0.436

log(population density [km−2]) 0.222 (0.113) 0.058 0.127 (0.133) 0.325

Life expectancy [years] −0.011 (0.076) 0.883 0.011 (0.087) 0.886

GDP 2.6× 10−5 (1.5× 10−5) 0.088 3.8× 10−5 (1.7× 10−5) 0.037

Human development index 1.94 (5.52) 0.726 −3.9 (6.4) 0.549

Elderly [%] 0.077 (0.062) 0.224 0.110 (0.074) 0.152

Model 7

log(test–standardized cases [%]) 0.968 (0.148) 1.7× 10−6* 0.773 0.671 0.951 (0.172) 1.3× 10−5* 0.756 0.647

GRSI 0.030 (0.015) 0.055 0.030 (0.018) 0.118

Vitamin D status (sufficient vs. deficient) −0.716 (0.326) 0.043 −0.763 (0.372) 0.055

Influenza vaccination rate 0.019 (0.006) 0.0055* 0.020 (0.007) 0.011

Life expectancy [years] −0.046 (0.112) 0.685 −0.070 (0.123) 0.575

log(population density [km−2]) 0.092 (0.107) 0.399 0.062 (0.124) 0.623

Smoking prevalence [%] −0.014 (0.022) 0.520 −0.022 (0.025) 0.350

log(CVD death rate) −0.037 (0.769) 0.962 −0.165 (0.936) 0.862

Diabetes prevalence [%] −0.058 (0.069) 0.414 −0.047 (0.082) 0.572

Hospital beds per 1000 0.032 (0.072) 0.657 0.065 (0.082) 0.433

GDP 3.8× 10−5 (1.2× 10−5) 0.0055* 4.2× 10−5 (1.4× 10−5) 0.0074*

Human development index −2.5 (5.2) 0.630 −2.8 (6.2) 0.654

Elderly [%] 0.088 (0.057) 0.143 0.097 (0.065) 0.150

Model 8

log(test-standardized cases [%]) 0.844 (0.123) 9.1× 10−7* 0.727 0.681 0.809 (0.147) 1.1× 10−5* 0.689 0.634

GRSI 0.021 (0.011) 0.071 0.021 (0.014) 0.154

Vitamin D status (sufficient vs. deficient) −0.704 (0.283) 0.023 −0.801 (0.332) 0.024

Flu vaccination rate [%] 0.021 (0.005) 0.00021* 0.021 (0.006) 0.0015*

log(population density [km−2]) 0.127 (0.097) 0.209 0.099 (0.111) 0.379

GDP 2.8× 10−5 (7.3× 10−6) 0.0070* 3.0× 10−5 (9.0× 10−6) 0.0023*

GDP, gross domestic product; GRSI, Government Response Stringency Index; CVD, Cardiovascular disease; *p < 0.01 (statistically significant).
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for vitamin D levels, test-standardized cases and the GRSIs with

any of the other variables.

The results of both the GLMs (assuming a Gamma

distribution for the outcome variable y) and the LRMs fitted to

log(y) are presented in Table 1. The GLMs and LRMs yielded

qualitatively similar results for all eight hypotheses considered.

Test-standardized cases alone were able to explain about 20%

of the variance in y or log(y), respectively, while the full

model (model 7) was able to explain 64–67% as judged by

the adjusted KL-R2 values. As expected, test-standardized cases

were positively related to and the most significant predictor

of COVID-19 related deaths in all models. As also expected,

sufficient vitamin D status was associated with fewer deaths,

although the association was only significant at the conventional

p = 0.05 level in models 7 and 8, but not at p = 0.01,

as stipulated. Surprisingly, however, it was found that the

GRSI was no significant predictor of COVID-19 related deaths,

and even exhibited a positive association (i.e., more stringent

measures predicting higher death rates). Also surprisingly,

flu vaccination rates were significantly and positively related

to the outcome, i.e., there were more deaths in countries

with higher flu-vaccination coverage. The number of hospital

beds, percentage of elderly, human development index and

smoking and diabetes prevalence, were not strongly associated

with COVID-19 related deaths. In contrast, the GDP was

found to be a significant predictor in models 7 and 8

with a higher GDP being associated with more COVID-19

related deaths.

A ranking of the different models is given in Table 2. The

evidence clearly favored the data-drivenmodel 8 which was built

by first selecting variables using the LASSO method. Compared

with this model, all other models were basically ruled out by

the strength of evidence. This shows that a specific combination

of government-, population- and country-specific factors were

important for predicting COVID-19-related deaths. This final

model 8 was thereby able to explain roughly two-thirds of the

variance in outcomes, similar to the full model 7, but using seven

less predictors.

TABLE 2 Comparison of the eight di�erent models specified in equations (1–8).

Generalized linear model Linear regression model

Rank Model AICc 1i wi E8,i Model AICc 1i wi E8,i

1 8 505.1 0.0 0.9998 1 8 104.9 0 0.999 1

2 7 524.2 19.1 <0.0001 13,805 3 120.3 15.4 0.0005 2,211

3 3 524.8 19.7 <0.0001 19,376 7 121.8 16.9 0.0002 4,781

4 5 524.9 19.8 <0.0001 19,641 5 121.9 17.1 0.0002 5,083

5 6 527.5 22.42 <0.0001 73,783 6 123.9 19.1 <0.0001 13,940

6 4 527.5 22.43 <0.0001 74,275 4 125.7 20.8 <0.0001 33,247

7 2 538.5 33.4 <0.0001 >100,000 2 129.7 24.8 <0.0001 >100,000

8 1 541.3 36.2 <0.0001 >100,000 1 130.7 25.8 <0.0001 >100,000

Models were ranked according to increasing AICc, i.e., the higher AICc the less parsimonious the model and the worse the fit in relation to the number of variables employed. AICc:

Bias-corrected Akaike Information Citerion; △i : Difference in AICc to the best model (models with △ > 15–20 must be judged to be implausible); wi : probability of model i being the

Kullback-Leibler best model; E8,i : evidence ratio between model 8 (the best model) and model i.

TABLE 3 Results of the full generalized linear models fitted to the original dataset with missing variables removed (intercept not reported).

Full generalized linear model (N= 31) Full linear regression model (N= 31)

Variables Coefficient estimate (SE) p-value Coefficient estimate (SE) p-value

log(test-standardized cases [%]) 0.812 (0.143) 7.6× 10−6* 0.824 (0.174) 7.9× 10−5*

GRSI 0.015 (0.011) 0.192 0.012 (0.014) 0.393

Flu vaccination rate [%] 0.026 (0.005) 8.6× 10−6* 0.024 (0.006) 0.00026*

Vitamin D status (sufficient vs. deficient) −0.777 (0.256) 0.0057* −0.798 (0.311) 0.017

log (population density [km−2]) 0.142 (0.097) 0.156 0.161 (0.117) 0.182

Gross domestic product 2.8× 10−5 (7.3× 10−6) 0.00064* 3.1× 10−5 (8.8× 10−6) 0.0016*

Model quality

KL-R2 0.781 0.762

Adjusted KL-R2 0.726 0.703

GRSI, Government Response Stringency Index; SE, Standard error; *p < 0.01 (statistically significant).
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In order to check if our results are dependent on the

imputation of missing variables, we refitted the best GLM

and LRM model to the original dataset with missing variables

removed (Table 3). These models resulted in qualitatively very

similar results as model 8 in Table 1 and confirmed that the

two most important predictors of standardized COVID-19

related deaths were again influenza vaccination rates and the

number of test-standardized cases, which were both positively

associated with the outcome. GDP was also confirmed as a

significant and positively associated predictor of COVID-19

deaths, and vitamin D status now reached the threshold of

statistical significance in the GLM (p= 0.00573).

Discussion

Modeling COVID-19 related death rates in 43 European

countries during the initial phase of the outbreak until August

2020, unravels some interesting findings:

a) Unsurprisingly, test-standardized CoV2-cases predict the

number of deaths. This variable on its own was able to

explain about 20% of the variance.

b) Surprisingly, the stringency of government responses

correlated positively with COVID-19 related death rates,

i.e., stricter government response was associated withmore

deaths; however, it was not a significant predictor.

c) Also surprisingly, the second-most important predictor

was the flu-vaccination coverage in the elderly: the higher

this vaccination rate is, the more COVID-19 related deaths

we see in a country.

d) We confirmed that population-wide vitamin D status may

have acted protectively against COVID-19 related deaths

during the initial phase of the outbreak. It was a highly

significant predictor in the best GLM fitted to the dataset

with no missing variables (Table 3).

e) Countries with a higher GDP experienced a higher

COVID-19 associated death rate.

These findings are strengthened by the fact that two different

models reached the same conclusions: a GLM predicting a

gamma-distributed outcome variable with log-linked predictors

and a standard LRM with identity link functions of predictors

on a log-transformed outcome variable.

It is easy to understand that more CoV2 cases translate

into more COVID-19 related deaths. The importance of

this predictor on its own is underlined by the fact that

it is able to explain roughly 20% of COVID-19 related

deaths. However, there remains variance to be explained

by other factors. Although we do not assume we have

captured all important variables, we have captured at least

some as only six variables were able to explain about two-

thirds of the total variance. A reassuring finding was that

country-wide vitamin D status was inversely associated

with COVID-19 related deaths, consistent with clinical and

epidemiological data (8–13). Most surprising and most

counterintuitive are the two findings that there are more

COVID-19 related deaths in countries with higher flu

vaccination coverage in the elderly, and, in addition, that the

severity of governments’ responses with non-pharmaceutical

interventions was non-significant and counterintuitive in its

effect (Table 1).

How can this strong association between flu vaccination

rates and COVID-19 related deaths be explained? A careful

randomized trial of flu vaccination in children showed that

children who were vaccinated against influenza were better

protected against influenza but suffered a fourfold higher risk

of other respiratory virus dependent diseases (35). This might

have to do with unknown mechanisms that disturb the ecology

of pathogens, known as the virus interference phenomenon. A

study conducted during the 2017/2018 influenza season revealed

that flu vaccination was associated with a 36% increased odds

of contracting respiratory coronavirus diseases (odds ratio 95%

confidence interval 1.14–1.63, p < 0.01), while affording specific

protection against influenza and parainfluenza viruses (36).

Thus, the negative impact of flu vaccination might have

to do with several mechanisms: First, the virus interference

phenomenon as shown for non-CoV2 coronaviruses (36);

second, the fact that the immunological load on an organism

that has to deal with a flu vaccine binds resources that cannot

be mustered against a new and dangerous pathogen like CoV2.

Third, it might also be the case that immune-enhancers in

vaccines, such as aluminum derivates which are potentially

toxic, burden the organism and hamper natural immunity. For

example, it was shown experimentally in chicks that aluminum

can disturb vitaminDmetabolism (37). Furthermore, it has been

argued that influenza vaccines are produced in eggs and other

cell-systems that are not routinely tested against corona-viruses.

Hence, corona-virus proteins from other corona-viruses might

be present in these vaccines and induce allergic reactions against

the novel CoV2 (38). Although these biological mechanisms

would support the hypothesis that higher influenza vaccination

rates increased COVID-19 mortality rates, we cannot rule

out the possibility that influenza vaccination rate is simply

a non-causal confounder strongly associated with some other

(untested) variable, so that further research is needed to resolve

this issue. Our finding is also in contrast to data from the US

(39, 40). However, the correlation between influenza vaccination

and COVID-19 death rate in the US is much lower than

in Europe (24), probably because there is little variation in

influenza vaccine coverage in the US. Our results are derived

from population-level data in Europe in the elderly, whichmight

describe a specifically susceptible fraction of the population.

Non-pharmaceutical interventions were widely hailed in

modeling studies as having prevented higher incidence figures

of cases and deaths (41–43). While this might be true for some
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countries and some single interventions, several authors are

skeptical (44–49). Careful modeling studies for Germany, for

instance, show that, although Germany was comparatively early

to react – first measures were introduced onMarch 8 and shortly

after this a full country lockdown was enacted – the peak of the

infection and of the reproduction numbers was reached in nearly

all 420 German districts on or around March 8 and thus none of

the non-pharmaceutical interventions could have been causally

related to the reduction of cases, and hence deaths (50, 51). The

ensuing reduction of cases is a misattribution: it was not due to

the lockdown, but obviously to the fact that the virus followed

its own dynamic which needs to be better understood (52).

Thus, there is independent evidence that non-pharmaceutical

interventions are less effective than often thought. This would

explain the weak association with COVID-19 related deaths in

our analysis. Interestingly, our observation that the GRSI was

positively associated with COVID-19 related deaths during the

first phase of the pandemic replicates an earlier modeling study

by Annaka which included data from 108 countries and in which

this association was statistically significant in Ordinary Least

Squares regression (31).

We find it quite remarkable that only six variables help to

explain roughly two-thirds of the variation in COVID-19 related

deaths. Because vitamin D status was one of them, it might be

interesting to study other variables related to health. Vitamin

D entered the best model number 8 with a comparatively large

regression coefficient and was highly significant in a GLM fit

to the complete dataset. Vitamin D seems to be an important

predictor, as models without it are clearly inferior. For example,

removing vitamin D status as a predictor from the GLM 8 fitted

to the complete dataset resulted in a significantly worse model

fit (AICc = 424.4 vs. 362.0) and less efficiency in explaining

variance (KL-R2adj = 0.684 vs. KL-R2adj = 0.726). Thus, as

a theoretically and numerically strong predictor, vitamin D

FIGURE 3

Corrgram showing the Spearman correlation coe�cients for all pairs of the six variables included in the best model. The strongest correlation

was observed between vitamin D and the gross domestic product which was almost significant (p = 0.013).
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strongly improves model fit and therefore we conclude that

vitamin D was protective against death during the first wave of

the Covid-19 pandemic. Its lack of strong statistical significance

in models fit to the imputed dataset is likely due to the coarse

grained nature of our data and uncertainty in imputation of

missing values.

The limitations of our approach need to be kept in mind:

First, one might ask whether collinearity inflated our results,

as some of the correlations between the variables used were

rather high (Figure 2). However, this was not the case since no

significant correlations existed among the six variables in the

best model (Figure 3). This was supported by the computation

of variance inflation factors which were all <1.65, showing that

there was no significant collinearity between these six variables.

In particular, flu vaccination rate had the least collinearity with

the other predictors (variance inflation factor= 1.2).

Second, we were unable to find flu vaccination data, GRSI

and some other data for all countries. We tried to overcome this

limitation through multiple imputation by chained equations,

and the results were consistent with an analysis using only the

cases for which every variable value was known.

Third, one potential problem we cannot remedy is the

notorious unreliability of data or differences in the definition

of cases, of deaths, and in reporting standards. This can be

seen in the fact that Belgium is a clear outlier in all analyses

that decreases the fit of the model. It is well known that the

definition of COVID-19 related deaths in Belgium was more

lenient than in other countries. Also, there is some evidence

that some authoritarian governments tended to manipulate

(downplay) their COVID-19 death data (31), which could have

biased our results. In his country-level modeling study, Annaka

(31) accounted for such a putative reporting bias by including

the HRV transparency index developed by Hollyer et al. (53)

which he used as a proxy for data transparency. However,

the HRV index was originally not intended for assessing the

transparency of pandemic death reporting; in addition, its latest

version (the one used by Annaka) dates to the year 2010

and was only available for 21 of the 43 countries included in

our analysis (median index 4.403, range −0.685–5.636); that

Denmark scored worst with an HRV index of only −0.685 also

appears counterintuitive and questions the application of this

index to judge the transparency of COVID-19 related deaths

reporting. The fact that we restricted the analysis to European

countries of which the large majority nowadays is characterized

as democratic would have mitigated the putative effects of data

transparency bias.

Vitamin D estimates also have several uncertainties, such as

having been measured in rather small cohorts, in different years

and during different times of the year. Whenever possible, we

preferred vitamin D values from the literature that had been

measured in elderly people and during winter/spring. There was

a weak positive correlation between a country’s representative

25(OH)D concentration and latitude (Kendall’s τ = 0.255,

p= 0.0438), pointing toward vitamin D supplementation having

a stronger influence on vitamin D status than living in southern

latitudes. Also, COVID-19 reporting systems might be less

reliable in some countries compared with others. These are the

limits of our data and our analyses. But considering the fact

that the whole world, politicians and public health officials use

exactly the same data for their decisions should allow us to use

them for analysis. One should remember that being a case, when

considering the number of tests in a country, has only a weak

relationship with becoming a fatality. It has been shown that

the case fatality rate during the first wave was much less than

previously assumed and estimated to be 0.15% (54). In Germany

the case-fatality rate has been calculated from well documented

cohorts to be 0.12 to 0.35% (55, 56). The still widely circulating

higher case fatality rates are due to the fact that they are largely

calculated using raw, absolute figures without knowledge of the

real prevalence (57). But also standardized figures might be

unreliable. Often the same person is tested multiple times. Thus,

we likely overestimate the number of cases by somemargin. This

would mean: the true link between being a case and becoming a

fatality is probably even weaker.

Considering all these weaknesses our paper also has some

strengths. First, care was taken to ensure that the essential

requirements for linear modeling were met. Second, we pre-

specified plausible hypotheses (expressed as GLMs or LRMs)

and used a robust model comparison framework based on

Kullback-Leibler information to compare them, in this way

automatically incorporating penalties for potential overfitting.

Third, restricting the analysis to Europe means that we have

a comparatively homogeneous sample which nevertheless has

enough variability. While all countries issued warnings, the way

non-pharmaceutical interventions were implemented differed

widely, from suggestions and recommendations in Sweden to

very strict stay-at-home orders that were policed in Spain, from

nearly no regard in Belarus to strict political measures in Italy.

Thus, we likely have seen a representative laboratory for the

world, except that we do not cover any variance in ethnicity.

Conclusions

In conclusion we see that COVID-19 related deaths during

the first wave were most importantly dependent on the

percentage of test-positive cases and flu-vaccination rate among

the elderly in a country, whereby larger flu vaccination rates

were associated with higher COVID-19 related deaths. The third

important predictor was the GDP, followed by country-wide

vitamin D status in the elderly, for which a causal relationship

appears well supported by clinical and mechanistic evidence.

These variables predict the variability in COVID-19 related

deaths much better than the severity of governmental responses,

the availability of hospital beds, smoking and diabetes prevalence

or CVD death rates. Overall, we were able to show that a
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specific combination of government response-, population- and

country-specific predictors was able to explain roughly two-

thirds of the variance in COVID-19 related deaths. This might

encourage others to look for additional factors that may explain

the remainder of the variability in cases and deaths during

the initial phases of the CoV2 outbreak. Ultimately, using the

insights frommodeling studies such as oursmay help to be better

prepared against future infectious disease outbreaks.
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